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This article introduces a multinomial logit model that uses ancillary information to control for uncer-
tainty in both the observed choices made by respondents, and in the attributes of a respondent’s choice
set. Simulated data are used to compare the performance of this estimator versus simpler models, under
several different kinds of uncertainty.
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When estimating the value of natural re-
sources, the applied analyst must often work
with noisy or otherwise imprecise measures of
both dependent and independent variables. To
help control for this uncertainty, this article
introduces a multinomial logit model (MNL)
that uses ancillary information to control for
uncertainty in observed choices and in the at-
tributes of a respondent’s choice set.

For example, surveys of rural recreationists
may encounter difficulties when identifying ex-
actly where people visited—since many sites
may be “informal” (such as the “the park down
by the river”).1 Second, even when sites can be
identified, good information on site attributes
may be lacking; a problem that is more likely
to be true for “informal” sites (such as sites
that are not intensively managed by govern-
ment agencies).

When faced with such a problem, one can
construct “regions,” and assume that a respon-
dent chooses to visit a region, rather than a par-
ticular site (Feather, Hellerstein, and Hansen).
Environmental attributes, such as water
quality or land use, are often available on a
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1 Alternatively, population surveys often are constrained in
just how much detail can be acquired from respondents, ei-
ther due to cost and time concerns, or due to issues of
respondent confidentiality—for example, the Fishing, Hunt-
ing, and Wildlife Associated Recreation (FHWAR) survey of
the U.S. Fish and Wildlife Service (http://www.census.gov/prod/
www/abs/fishing.html.)

regional basis.2 By assigning these regional
measures of attributes to the constructed re-
gions, an aggregated dataset can be created.
While aggregated datasets can be used in MNL
models (Ben-Akiva and Lerman), the noise in-
troduced when regional measures are used to
describe particular sites within a region can im-
part an “errors in variables” bias to estimated
coefficients.

An additional problem arises when a signif-
icant fraction of respondents may be unsure
about the actual location they visited.3 In this
case, the “chosen region” cannot be defini-
tively identified. In terms of discrete choice
models, this means that not only is information
on the attributes of a respondent’s choice set
noisy, it’s not always certain which alternative
is chosen.

To account for the problem of uncertain
data in discrete choice models (DeVaro and
Lacker; Fader, Lattin, and Little), this pa-
per introduces two augmented MNL models.4
These models use Bayesian-like weighting, and

2 For example, the United States Department of Agriculture’s
Natural Resources Inventory (NRI) information that can be used
to construct subcounty-level statistics on a number of land use and
soil quality variables (http://www.nhq.nrcs.usda.gov/NRI/).

3 For example, in Feather, Hellerstein and Hansen, many individ-
uals identified a visited site using distance and direction from their
home. In cases where the visited site was also identified by name,
it is possible to measure the accuracy of the distance and direction
information. While this distance and direction information was
informative, in about one-quarter of the cases the individual incor-
rectly identified the basic direction (i.e., they were between 90 and
180 degrees off).

4 Note that problems with uncertain data can arise in many set-
tings other than our “rural recreation” example. For example (as
suggested by a reviewer) stated preference surveys can also be
subject to uncertain data; as when the analyst observes the choice
made by a respondent, but with some skepticism.
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simulation techniques, to control for uncer-
tainty in both site choice and site character-
istics. The next section outlines the models.
Simulations are then used to test the perfor-
mance of these estimators, comparing them to
simpler heuristics.

An Uncertain Dependent
Variables Correction

I start with the problem of uncertainty in
the dependent variable. Consider the discrete
choice model, where an individual (i) chooses
from a k-element choice set (S). Uncertainty in
the dependent variable can arise when, rather
than reporting an actual choice (Si), respon-
dents provide uncertain information (Di) that
the analyst then uses to imprecisely identify a
chosen alternative. If, instead of simply mak-
ing a best-guess as to the chosen alternative Si,
the analyst uses Di to assign a K × 1 vector of
probabilities (�i) that measure whether each
alternative in S was actually chosen, then it
is relatively straightforward to control for this
uncertainty.

Consider our rural recreation example,
where S is a set of k outdoor recreational sites,
and Di is a self-reported distance and direc-
tion (from the respondent’s home to where she
recreated). Since people may have a hazy idea
as to just where they went, the reported dis-
tances and directions may be imprecise. How-
ever, if a sub-sample of visitors provide the
actual site visited (say, a site name), along
with distance and direction, then a reporting-
accuracy model can be constructed by regress-
ing the actual distance and direction (to the
visited site) against the self reported distance
and direction. Using such a reporting-accuracy
model, the goal is to generate (for each re-
spondent) the probabilities (�1, . . . , �k) of
actually visiting each of the available sites
(S1, . . . , Sk).5

Incorporating � into an MNL model yields
the MNL model with an Uncertain Depen-
dent Variables (UDV) correction. This yields a
Bayesian-like expression that computes a pre-
dicted probability of choosing an alternative
by combining prior probabilities with the ob-
served attributes of these alternatives. For a

5 For respondents reporting an actual site name, the probability
for the actual site will equal 1, with all other probabilities set equal
to 0.

single respondent i, who reports Di, the con-
tribution to the likelihood function is

L i =
K∑

k=1

(
exp(�ik)∑K

�=1 exp(�i�)
�ik

)

=
(∑K

k=1 �ik exp(�ik)∑K
�=1 exp(�i�)

)
(1)

where K is the total alternatives to choose
from, �ik = Xik� is the ith respondent’s sys-
tematic utility from choosing alternative k
(of 1, . . . , K alternatives); given observ-
able alternative-specific attributes Xik. Actual
utility equals: �ik + �ik (�ik an unobservable
random factor with an extreme value distri-
bution). The UDV correction �ik = �(k|Di):
the “prior” probability that respondent i actu-
ally chose alternative k, given that she reported
Di. Please see the Appendix for a discussion of
how these can be derived using a reporting ac-
curacy model in conjunction with a Bayesian
mechanism. The log likelihood for the entire
sample (i = 1, . . . , I) of respondents is

ln L = ln

(
I∏

i=1

L i

)

=
I∑
i

[
ln

(
K∑

k=1

�ik exp(Xik�)

)

− ln

(
K∑

k=1

exp(Xik�)

) ]
.

(2)

Note that when the choice of k′ is known
with certainty (�k = 0; k = 1, . . . , k′ − 1, k′ +
1, . . . , K; and �k = 1), equation (2) collapses to
the standard MNL. The gradient of equation
(2), which is described in the Appendix, is also
similar to the gradient of the standard MNL.

An Uncertain Independent
Variables Correction

In the MNL model with a UDV correction dis-
cussed above, the dependent variable is not
known with certainty, but the independent
variables are precisely measured. That is, al-
though the analyst may not be certain which
alternative was chosen, she does have accu-
rate measures of the attributes of these alter-
natives. However, such accurate information
may not be available, forcing the analyst to use
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noisy measures, and thereby risking an errors-
in-variables bias.

For example, in our rural recreation model
the obscurity of many recreational sites may
force the analyst to use regional averages, such
as county averages of land use and water qual-
ity, as measures of site attributes. However,
since regions are usually not homogeneous, us-
ing regional averages introduces a possibility
of errors in variables.6

In order to minimize this type of bias, we
consider an Uncertain Independent Variables
(UIV) correction, where noisy measures of in-
dependent variables are explicitly controlled
for.

The model requires an additional set of in-
formation: the variance/covariance matrix of
the independent variables. In general, this is
required on a per region basis; though in some
special cases a single matrix could describe all
regions (if regions differ in average measures,
but not in higher moments).7

Given this information, the likelihood for
observation i is

L =
∫

�

[
K∑

k=1

(
exp(Xik�)∑K

�=1 exp(Xi��)
�ik

)]
f (X) d X

(3)

where � is range of support of X, X is
Xi1|. . .|XiK, Xik is J × 1 vector of explanatory
variables for choice k, and f (X)is probability
of observing X.

Note the inclusion of the �ik UDV correc-
tion in equation (3). If the chosen site is known
with certainty, �ik can be set to 1.0 (for the cho-
sen site) and 0.0 (for all other sites).

Also note that this requires integrating a J∗K
multivariate distribution (say, a multivariate
normal) over the (possibly −∞ to +∞) range
of support of X. To reduce this complexity one
can use

�ik = Xik�

E[�ik] = X̄ik�

Var[�ik] = �
′
�ik�

where X̄ik is the expected value of Xik, and �ik
is variance matrix of Xik.

6 Alternatively, consider a model of recreational fishing, where
the catch rate at sites depends on unobservable angler-specific at-
tributes. Using site-specific average catch rates to explain an indi-
vidual’s site choice would introduce errors in variables problem.

7 Note that “region” should be read as a shorthand for “the set
of imprecise measures, often derived from aggregate data, used to
assign values to the attributes of an alternative.”

Substituting � for X�

L i =
∫

M̄

[
K∑

k=1

(
exp(�ik)∑K

�=1 exp(�i�)
�ik

)]

× f (U) dU

or

ln L i = ln

(∫
M̄

[
K∑

k=1

(
exp(�ik)∑K

�=1 exp(�i�)
�ik

)]

× f (U) dU

)

(4)

where M̄ is range of support of U, U is
�i1| . . . |�iK, and f(U) is probability of observ-
ing U.

It is often reasonable to assume that the re-
alization of Xik is independent of Xil(l �= k).
Hence, the variance matrix of X is block diag-
onal and the variance matrix of U is diagonal.

Given the complexities of multivariate inte-
gration over a normal (or other) density func-
tion, simulation methods can be used to solve
the above. In particular, for each observation
a total of R different K × 1 vectors (Mr, r =
1, . . . , R) of critical values are drawn from a
multivariate normal distribution. Hence (sup-
pressing the i subscript):

Mr ∼ N(M̄, �)

where M̄ = E[u1], . . . , E[uK ]

� =




�1 . . . 0
. . . �2 . . .

. . . . . . �K


(5)

where E[�k] = X̄k� X̄k is expected value of Xk,
�k is Var[�k] = �

′
�k�, and �k is variance ma-

trix of Xk.
Following the method discussed in Train,

for each Mr (K × 1) vector of values, the
integrand of equation (4) is calculated. The
likelihood, for a given observation and a partic-
ular value of �, is the average of the R different
values—with one value for each realization of
Mr (r = 1, . . . , R).

Note that �k is the covariance of the inde-
pendent variables of individual i’s kth choice,
and �k is the variance of �k. Also, due to inter-
regional independence of X, �; is a K × K di-
agonal matrix.

Re-expressing equation (4) (and noting
that equation (4) incorporates the UDV
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correction) yields the Uncertain Independent
and Dependent Variables (UIDV) model:

ln L i= ln


 R∑

r=1

[∑K
k=1 exp(�ikr )�ik∑K

k=1 exp(�ikr )

]
R


(6)

where �ikr is X̄ik� + �r

√
�′ ∑

ik � and �r is a
draw from a standard normal.

Note that the second term in �ikr captures
the effect of uncertainty-in-X on the value of
�. For the gradient of equation (6), please see
the Appendix.

Simulated Data

To investigate the performance of the UIV and
UDV corrections, we turn to a simulation.8
The simulation has several components: gen-
eration of a set of sites and a “population of
visitors,” computation of which site is selected
and which site appears to be selected, estima-
tion of coefficients using several models, com-
putation of welfare measures, and comparison
of results.

Site Generation

The basic simulated landscape consists of a
grid of cells, with each cell tantamount to a
“region.” Each of these regions is described
by a value for each of several “regional” at-
tributes. The spatial pattern of these “regional”
attributes can vary from totally uniform (same
value in each cell), to random, to parametri-
cally described.

Sites are then randomly scattered across the
grid. Depending on the region (the cell) that
a site lands in, values for each of several at-
tributes are assigned to the site. This assigna-
tion uses the “regional” attributes as means
of a uniform distribution. Thus, several sites
within a single region will have similar, but not
exactly the same, attributes.

Population Generation

Individuals are randomly scattered across the
grid.

8 The GAUSS program used to create the simulated datasets, and
to estimate the models, is available from the author upon request.

Actual Site Selection

For each individual (i), the utility offered by
each of the sites is computed as

Uis = Ss ∗ � + Dis ∗ �d + �is

where Ss are the attributes of site s, Dis is the
distance from individual i to site s, �is is the
extreme value distributed random error, and
�s, �d are the coefficients. Note that �d < 0.

The chosen site is the one with largest Uis.

Reported Site Selection

Two methods are used to simulate the effects
of using less than perfect site selection infor-
mation:

1. Using the “region” the site is in. That is,
rather than using the attributes of the site,
use the “regional” attributes of the cell that
the site is in. This simulates a case where
attributes of sites are not known, but statis-
tics on environmental attributes are known
at a regional level.

2. A “reported distance/direction” reported
site is generated by randomly deviating
both the distance and direction traveled
by the individual. For sufficiently large de-
viations, the location pointed to by the
reported distance/direction will be in a
different region than the actually visited
site. This simulates uncertain information
about which site was chosen, even when
aggregations of site (“regions”) are used
as choices.

Model Estimation

An MNL model is used to estimate coefficient
vector for the true model (the model using the
actual site choice). MNL models, including the
UDV and UIV corrections, are also used to
estimate a coefficient vector for each of the
less-than-perfect site choice models.

A simple heuristic is used for models incor-
porating the UDV and UIV corrections—the
probability of reporting a distance/direction
given that a particular site was actually cho-
sen, p(Di|k), is inversely proportional to the
distance between the “reported site” and the
“actual site.”

Welfare Estimation

For each estimated coefficient vector a
compensating variation for each site choice
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occasion computed as (Ben-Akiva and
Lerman):

CV = ln

(∑S
s=1 exp(Ss� + Dis�d) + 0.577

)
�d

.

(7)

Comparison of Results

For each individual, the CV computed using
coefficients generated by a less-than-perfect
model is compared to the true CV. The true
CV is calculated using the attributes of the site
actually chosen, and the true value of �.

Our first results, in table 1, display how
effective serveral heuristics are in dealing
with uncertainty. Each row represents a sin-
gle simulation, with each column a differ-
ent MNL estimator. To reiterate, none of
the models in table 1 use the UIV or UDV
corrections.

These results (which are representative of
numerous runs using different deviations, dif-
ferent random number seeds, and different
values of the true beta) reveal few clear pat-
terns. In general, the “actual site, estimated
beta” (column 1) model performs well. The
“actual region, actual beta” (column 2) model
has errors that never exceed 30%, which sug-

Table 1. Selected Simulation Results. Percentage Deviation of Estimated CV from True CV

Actual Actual Actual Reported 50% Actual Region &
Site, Region, Region Region, 50% Reported Region,

Est. � Actual � Est. � Est. � Est. �

Constant “regional averages”
Low error 26 24 205 133 162
Medium error 24 20 104 56 46
High error 3 27 147 75 32

Random “regional averages”
Low error 5 21 77 75 77
Medium error 20 21 64 86 78
High error 3 24 15 28 13

Normal “regional averages”
Low error 9 19 25 17 11
Medium error 5 18 76 67 71
High error 22 21 14 44 17

Notes: The true average CV ranges between 5 and 10. Smaller values indicate better performing models (small deviations from the “true” value).
The low, medium, and high error rows refer to the size of the error committed by respondents when reporting their site choice. Inaccuracy is driven by

deviating the reported distance and direction using a uniform random number with a limits of (plus or minus):

Distance Direction

Low 10% 10
Medium 25% 40
High 40% 60

For distance, the limits are relative to the actual distance. For direction, the standard deviation is in angular degrees.
The “constant,” “random,” and “normal” sub-table labels refer to how regional average values (for site characteristics) were assigned. “Constant” means

that all regions have the same average value, “random” means that each region is randomly assigned an average value, and “normal” means that each region’s
value is derived from a two-dimensional normal distribution.

gest that the use of aggregate sites does not
introduce overwhelming errors. However, use
of estimated beta with the “actual region” (col-
umn 3) has mediocre performance. In fact, all
models that use regional data and estimated
betas perform roughly equally well. The “ac-
tual” region results tend to be best, but not
always.

The “50% correct region & 50% reported
region” (column 5) model reflects a “use all
available information” scenario: the notion is
that one-half of respondents do not go to iden-
tifiable sites, forcing the analyst to use dis-
tance and direction information. These results
are somewhat better than the “reported” (col-
umn 4) results, possibly reflecting less error in
the dependent variable. However, the results
are not across the board (sometimes the “re-
ported” results are better).

With this as background, consider MNL
models that contain the UDV and UIV
corrections. Table 2 displays the results from
a collection of simulations that incorporate
UDV and UIV corrections. Each cell repre-
sents averages over a number of simulations
using the same coefficient and model structure.

Summarizing (and these results are repre-
sentative of a number of simulations), the last
two rows indicate that, by itself, the use of
the UDV correction does not seem to help.
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Table 2. Selected Simulation Results. Aver-
age Percentage Deviation of Estimated CV
from True CV

Without UIV With UIV
Model Correction Correction

Actual site 39 (68) n.a.
Actual region 42 (23) 32 (19)
Reported region 65 (36) 49 (24)
50% actual region &

50% reported
region

47 (21) 32 (19)

Reported region,
with UDV

73 (47) 31 (17)

50% actual region &
50% reported
region, with UDV

48 (23) 32 (21)

Notes: Standard deviations are in parenthesis. The average % deviation
when using the actual region, and actual � is 15% (with a 3% standard
deviation). For the actual site mode, the UIV is not applicable, since
attributes are known with certainty. Averages, and standard deviations, are
over thirty-six simulations, using twelve different scenarios. Similar results
were obtained when ninety-six simulations were performed (on twelve
scenarios). The twelve scenarios differ in the reporting accuracy (the size
of the distance/direction errors), and how regional averages are distributed
(uniform, random, or normal). The “error” in predicting the compen-
sating variation is computed as: 100∗(predicted cv-actual cv)/actual cv.
“UDV” refers to the uncertain-dependent variables correction. In
the “50% actual region & 50% reported region, with UDV” model,
one half the observations utilize the UDV correction. The other half use
the actual region (observations have �k = 1, all other �k = 0, for some site k).

In fact, it can be worse than using the dis-
tance/direction models without a UDV cor-
rection (row 4 vs. row 6), though in most
simulations it was about the same. Moreover,
comparing row 4 to row 3, and row 6 to row
5, shows that the use of actual destination data
(if available) is almost always a good idea.

However, the disappointing results from us-
ing the UDV correction are largely resolved
(with errors cut in half) when the UIV cor-
rection is also applied. Not surprisingly, the
UIV correction also improves the actual region
model (row 2), since it helps control for possi-
ble errors in variables due to the use of regional
aggregation. Furthermore, the UIV correction
also improves the simple distance/direction
models (row 5 vs. row 3).

It would seem, for data that contain uncer-
tain measures of both independent and depen-
dent variables, that correcting for variance in
the independent variable (the UIV correction)
is more important than a correcting for vari-
ance in the dependent variable (the UDV cor-
rection), though doing both is best.

Conclusions

When considering valuation problems where
information on site choice is uncertain, the

analyst can turn to alternative sources of data.
These include alternative measures of “what
site was chosen,” such as the use of distance
and direction information; and it includes al-
ternative measures of the attributes of each
choice in a respondent’s choice set, as can be
provided by using regional aggregate measures
instead of unobservable site-specific attributes.

In this paper, we introduce two correc-
tions to the MNL estimator to deal with these
sources of uncertainty. The Uncertain De-
pendent Variables (UDV) correction uses a
Bayesian-like weighting, which assigns to each
alternative a probability that it was chosen, a
probability based on imprecise information as
to what the respondent actually chose. The Un-
certain Independent Variables (UIV) correc-
tion is an errors-in-variable type correction,
incorporating an iterative algorithm that uses
the variance of regional attributes as a means
to control for aggregation bias.

Using simulated datasets, several different
models (that contain imprecise measures of the
dependent and independent variables) were
examined. These include models that incor-
porate the UDV and UIV corrrections. By it-
self, the performance of the UDV correction is
disappointing. However, when combined with
the UIV correction, substantial improvements
occur, with aggregate models performing al-
most as well as models that incorporate exact
information.

These results suggest that analysts faced with
the problem of valuing “obscure” sites (such
as may be common in rural areas), and sites
for which noisy data on independent variables
is available (such as regional biophysical mea-
sures), ought to consider use of models that
explicitly incorporate uncertainty in site choice
and site attributes.

I conclude by noting that the simulations
examined here are far from complete. Fur-
ther analysis, focusing on simpler cases (such
as when site choice is uncertain, but site at-
tributes are known) is called for. Additional
measurement issues include the effects of
imprecision in the reporting-accuracy model,
and the impacts of approximating the co-
variance of independent variables. A more
complicated, iterative model may also merit at-
tention: which updates non-diffuse priors, that
are then combined with reporting probabili-
ties to compute Bayesian calculations of prior
probabilities.

[Received September 2002;
accepted May 2004.]
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Appendix

Computing Prior Probabilities

In many cases, the prior probability used in the UDV
model (�) may be determined using a Bayesian
method, where the analysts starts with the “report-
ing” probability:

�ik = p(Di |k)∑K
�=1 p(Di |�)

(A.1)

where p(Di|k) is the “reporting probability” of re-
spondent i.

The reporting probability is a density function
that describes the probability of reporting Di given
that alternative k was actually chosen. For exam-
ple, by centering a two-dimensional normal distri-
bution on the location of the actual site chosen (Lik),
p(Di|k) would be the probability value read at point
Di (suitably offset from Lik).

A more complete model could incorporate a
number of modifications. For example, individual
attributes (Z) might determine respondent accu-
racy, yielding p(k|Di, Zi). Or, some site-specific at-
tributes (L) may be correlated with how easy it is to
report their location, yielding p(k|Di, Lk).

Finally, the reporting-probability model need not
start with the diffuse priors of each site being chosen
with equal probability. Instead, prior probabilities
could be incorporated:

�ik = 	k p(Di |k)∑K
�=1 	k p(Di |�)

(A.1a)

where 	 k is a prior probability of choosing
alternative k. In (A.1), 	 k = 1 for all k. A non-
diffuse prior would modify 	 k using other informa-
tion; for example, information on the total number
of people choosing each alternative. Alternatively,
an iterative strategy could be used, with 	 k =
1 in the first round, and in latter rounds 	 k is
set equal to the predicted probability of choosing
alternative k.

Please note that the “prior” probability 	 k is not
the same as the “prior” probability �ik. � is an
exogenously determined probability of choosing al-
ternative k; in the simplest case, it is 1.0 for all alter-
natives. � is the probability of choosing alternative
k, given respondent-specific information (D), a re-
porting probability model (p), and 	 . In the simplest
case, it is 1.0 for one alternative and 0.0 for all other
alternatives,

Gradient of the UDV Model

The gradient of the log likelihood of the UDV model
is similar to the standard MNL:

d ln L d�

=
I∑
i

[∑K
k �ik Xik exp(Xik�)∑K

k �ik exp(Xik�)

−
∑K

k Xik exp(Xik�)∑K
k exp(Xik�)

]
.

(A.2)

Gradient of the UDV/UIV Model

The gradient of the model with both UIV and UDV
corrections (equation [6]), with respect to �, can also
be approximated using equation (4) and the critical
values from equation (5). We use the chain rule

dG

dx
= d(g( f1(x), f2(x), . . . , fK (x))

dx

= dg

d f1

d f1

dx
+ dg

d f2

d f2

dx
+ · · · + dg

d fK

d fK

dx
.

(A.3a)

The “dg” terms in equation (A.3a) are

d ln L i/d�ikr =
(

exp(�ikr )�ik × ∑
� exp(�ikr )

)
−

(
exp(�ikr ) × ∑

� exp(�ikr )�ik

)
(∑

� exp(�ikr )
)2 .(A.3b)
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The “df ” terms are

d�irk

d�
= Xik + �r

∑
ik �√

�
∑

ik �
.(A.3c)

Substituting, we get

d ln L i/d�

=

R∑
r=1

(
K∑

k=1

[
(exp(�ikr )�ik × ∑

� exp(�ikr )) − (exp(�ikr ) × ∑
� exp(�ikr )�ik)

(
∑

� exp(�ikr ))2 ×
(

Xik + �r

∑
ik �√

�/
∑

ik �

)])

R∑
r=1

[∑K
k=1 exp(�ikr )�ik∑K

k=1 exp(�ikr )

] .

(A.3d)

Note that the R divisor terms cancel out, so they do
not appear in equation (A.3d).


